2003 Diesel Engine Emissions Reduction Conference Newport, Rhode Island 24-28 August 2003

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems

R. Dalla Betta, J. Cizeron, D. Sheridan, T. Davis Catalytica Energy Systems Inc. Mountain View, California

Outline

- Overview-Requirements of a NOx adsorber system
 - Why a diesel fuel processor?
 - Regeneration
 - Desulfation
- Diesel Fuel Processor (DFP) performance requirements
- Engine test data
 - Fuel processor performance
 - Fuel penalty
 - Early DFP-NOx adsorber performance
- Desulfation strategy
- Conclusions

NOx Adsorber Overview

- Typical system characteristics
 - > 90% NOx emissions control demonstrated
 - Typically 2 to 4 liters adsorber volume per liter engine displacement
 - Regeneration and conversion of NOx to N₂ requires reducing environment
 - Reactive reductants allow operation at lower exhaust temperatures
 - ULSD compatible with periodic desulfation
- Issues related to adsorber performance
 - Adsorber must be fully regenerated with each cycle
 - Regeneration difficult at low temperatures
 - Desulfation requires high temperature
 - Adsorber durability appears to be a problem

NOx Adsorber Regeneration

Requirements

- Exhaust must be reducing
 - 0% O₂ and some reductant level
- Desire regeneration capability over entire engine operating range

Issues

- Effective NOx regeneration difficult below 300°C with in-pipe diesel injection
- Post cycle in-cylinder injection can generate more reactive reductants but can impact engine durability
- Ideal route to "rich" exhaust not established
 - Engine operation at rich conditions not acceptable
 - Late cycle injection or in pipe injection requires combustion on DOC or NOx adsorber
 - Reaction of excess oxygen + fuel on adsorber can generate local high temperatures

NOx Adsorber Operation

NOx Adsorber reactions

 Lean NOx trapping reaction (typical component is BaO/BaCO₃)

BaO + NOx
$$\xrightarrow{CAT}$$
 Ba(NO₃)₂

Regeneration cycle

Exhaust must become reducing

$$Ba(NO_3)_2 + [red] \xrightarrow{CAT} BaO + NO_2$$

$$NO_2 + [red] \xrightarrow{CAT} N_2 + H_2O/CO_2$$

[red] = reducing agent, e.g. H₂ or CO

Regeneration cycle

$$CH_{1.8} + O_2 \xrightarrow{CAT} CO_2 + H_2O$$
 $CH_{1.8} + H_2O \xrightarrow{CAT} CO + H_2$

NOx Adsorber Desulfation

- Fuel sulfur poisons NOx adsorption capacity
 - Desulfation frequency depends on fuel sulfur level and NOx adsorber size (capacity)
- Desulfation requirements
 - NOx adsorber must be heated to 600 to 750°C
 - Reducing environment removes sulfur
- Impact on adsorber durability
 - Desulfation appears to be the primary driver of degradation
 - Potential causes of degradation
 - High temperature during desulfation cycle
 - Local hot spots arising from diesel fuel combustion on the adsorber catalyst

Diesel Fuel Processor (DFP)

Target Performance Requirements

- Diesel fuel only required input
- Volume < 1 liter per liter engine displacement
- NOx adsorber regeneration
 - Convert diesel fuel efficiently to effective reducing agents, preferably
 H₂ and CO
 - Operate over full engine operating range
 - Rapid regeneration of NOx adsorber with minimal fuel penalty
- NOx adsorber desulfation
 - Allow <u>rapid</u> desulfation at lowest temperature possible
 - Combust fuel to "gently" heat the NOx adsorber to 500-750°C
 - Provide H₂/CO reductant to effect desulfation at lower temperatures
- Provide exhaust heat to aid in PM filter regeneration

DFP Dynamometer Engine Testing

- 7-9 liter engine, ~ 3 to 4 g/kW-hr NOx emissions level
- Single leg system with DFP followed by "black box" NOx adsorber
- DFP sized to ~0.9 liter per liter engine displacement
- Intake air throttle to control exhaust O₂
- DFP integrated with ECU to control regeneration cycle

DFP NOx Adsorber Regeneration Cycle

50% load point

- Engine throttled to
 ~5% O₂
- 3 second rich regeneration cycle

Lean-Rich NOx Adsorber Cycle

Typical engine cycle

60 s lean with 3 second rich regeneration

DFP Performance Summary

Fuel required by DFP can be divided into 3 categories

DFP Regeneration cycle

- Additional fuel due to throttled engine
- Fuel to reduce exhaust O₂ to zero
- Fuel to generate H₂/CO

- Optimization to minimize fuel penalty
 - Engine throttling is an effective way to reduce exhaust O₂
 - 5 to 8% O₂ may be effective lower limit for some engine operating regions
 - Fuel combustion to remove exhaust O₂ is required in any regeneration strategy
 - Effective conversion of fuel to H₂ and CO
 - High utilization of H₂ and CO to regenerate NOx adsorber

DFP Cycle Optimization

Fuel penalty: 50% load

- Theoretical estimate of DFP fuel penalty agrees closely with engine results
- X points are engine test data

Implications:

- Fuel penalty reduced by:
 - Shorter reforming time
 - Longer lean trapping time
- DFP cycle produces large excess of reductant (H₂+CO) compared to NOx trapped

Diesel Fuel Breakthrough

50% load data (X) and simulation

Hydrocarbon emissions

- Measured for several different DFP designs
- Generation 3 currently under development (initial results)
- In later designs, larger portion of HC emissions is methane
- Longer lean adsorption time reduces HC emissions

Early DFP-NOx Adsorber Results

DFP + NOx adsorber system performance

Lean time	Rich time	Fuel	NOx
		penalty	conversion
S	S	%	%
1/3			
60	2	7.3	>95
120	3	4.5	~92
120	2	3.8	~87

- Best performance would require a NOx adsorber optimized for combination with DFP
 - Designed to effectively utilize H₂/CO reductant
 - High NOx capacity desirable
 - Trade off with cost and vehicle packaging

Desulfation Simulation—Rig results

Desulfation cycle

- Heat adsorber to 500 to 600°C
- Provide reactive reductant as needed

Summary/Conclusions

- A diesel fuel processor could provide substantial advantage in the regeneration and optimization of <u>single leg</u> NOx adsorber system
- NOx adsorber regeneration
 - Demonstrated operation at 180°C exhaust temperature
 - Further development and integration with engine operation should allow operation over entire engine operation
- Desulfation
 - Could lower desulfation temperature and time and increase NOx adsorber durability
- Could be used to enhance PM filter regeneration
 - Increase exhaust temperature to PM filter